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Abstract LiMn1.5Ni0.5O4 is synthesized by a sol–gel method
and the intercalation kinetics as positive electrode for lithium-
ion batteries is investigated by EIS. LiMn1.5Ni0.5O4 particles
prepared via sol–gel process possess spinel phase with Fd-3m
space group. The charge-transfer resistance, the exchange-
current density and the solid-phase diffusion are found as a
function of temperature. The apparent activation energy of the
exchange current, the charge transfer, and the lithium diffusion
in solid phase are also determined, respectively. This result
indicates that the effect of the temperature on the cell capacity
and the current dependence of the capacity results mainly from
the enhancement of the lithium diffusion at elevated tempera-
tures. It can be concluded that LiMn1.5Ni0.5O4 cell has a bad
rate cycling performance at elevated temperatures before any
modification due to the high diffusion apparent activation
energy. The relevant theoretical elucidations thus provide us
some useful insights into the design of novel LiMn1.5Ni0.5O4-
based positive-electrode materials.
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Introduction

In recent years, there has been much interest in the develop-
ment of lithium-ion batteries having lithium insertion materials
as positive electrodes. Spinel LiMn2O4 has been considered a
promising positive-electrode material for lithium-ion batteries
in electric vehicles, plug-in hybrid electric vehicles, and hybrid
electric vehicles due to its low cost, low toxicity, and relatively
high energy density [1–3]. However, poor rate capability and
high-temperature performance limit its further application for
high-performance rechargeable batteries before any materials
modifications. The performance of LiMn2O4 has recently been
significantly improved by the approaches including coating [4],
particle size reduction [5, 6], and cation doping [7–14]. For
cation doping, most works focused on the Mn-site substitution,
and various cations such as Mg2+ [7], Ni2+ [8], Al3+ [9], Co3+

[10], Fe3+ [11], Cr3+ [12], Ti4+ [13], Nb5+ [14], and their
combination have been attempted. The development of
positive-electrode materials with high energy density is a cru-
cial step to promote the applications of Li-ion batteries in high-
power electronic equipments. Among all doped LiMn2O4,
LiMn1.5Ni0.5O4 has been considered as an important candidate
for this purpose as it offers high working potential (4.7 V), high
energy density (the energy density of LiMn1.5Ni0.5O4 is 20 %
higher than that of LiCoO2), acceptable stability, and good
cycling performance [4].

A variety of methods had been used to prepare LiMn1.5-
Ni0.5O4 yet, such as solid-state reaction [15], sol–gel [16],
emulsion drying [17], composite carbonate process [18], mol-
ten salt [19], combustion, and ultrasonic spray pyrolysis meth-
od [20].

The sol–gel method gives the electrode material with a fine
particle size, a narrow size distribution, and uniform compo-
sition, which leads to high electrochemical performance, so it
has been widely used to prepare positive-electrode materials
of lithium-ion batteries [21]. The diffusion rate of Li+ in solid-
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state active material may control the rate determining step of
the intercalation process, and plays a very important role in the
study of electrodes materials for lithium-ion batteries. Hence,
the lithium chemical diffusion coefficient (DLi) is considered
as one of the most important kinetic characteristics of elec-
trode material. Several techniques including cyclic voltam-
metry [22, 23], electrochemical impedance spectroscopy
(EIS) [24, 25], galvanostatic intermittent titration technique
[26, 27], and capacity intermittent titration technique [28]
have been extensively used to study the diffusion kinetics of
Li+ intercalation/deintercalation and to estimate the chemical
diffusion coefficients of Li+ in solid electrodes. EIS is consid-
ered as a very powerful technology to determine the rate of
individual electrode kinetic steps because it can be also
obtained under more equilibrium conditions compared with
other methods. Hence, in order to increase the understanding
of the performance limitations of LiMn1.5Ni0.5O4, we believe
that it is of utmost importance to further examine, in detail, the
kinetic properties of these types of insertion electrodes over a
broad range of temperatures. In the presented paper, LiMn1.5-
Ni0.5O4 is successfully synthesized by a sol–gel method, and
the electrochemical properties such as the charge-transfer
resistance, exchange-current density, chemical diffusion coef-
ficient, activation energy, and with different storage tempera-
tures are evaluated using EIS.

Experiment

Analytically pure grade lithium acetate [LiOOCCH3·2H2O]
(AR, 99%), Manganese acetate [Mn(CH3COO)2·4H2O] (AR,
99 %) and nickel acetate [Ni(CH3COO)2·4H2O] (AR, 99 %)
were used as precursor materials. The stoichiometric ratios of
these metallic salts were dissolved separately in citric acid at
1:1 molar ratios between the total metal ions and citric acid,
followed by continuous stirring for about 1 h. Afterwards, all
solutions were mixed and heated at 80 °C, followed by con-
tinuous stirring. The resulting solution was dried overnight at
about 100 °C to get precursor. The obtained powders were
fired at 450 °C for 4 h in air for complete organic removal. The
powders after organic removal were calcined at 850 °C for
18 h in air.

The phase formation behavior of the calcined powder was
characterized by XRD, using Cu Kα radiation. Electrochem-
ical impedance spectroscopy (EIS) in two-electrode cells is
measured by a PARSTAT 4000 electrochemical working sta-
tion over a frequency range from 0.1 Hz to 10 kHz at a
potentiostatic signal amplitude of 5 mV. The difference be-
tween two-electrode system and three-electrode system is that
the impedance spectrum of the two-electrode system is equal
to the sum of the spectra of the positive and the negative
electrodes in a three-electrode system [29, 30]. The prepared
electrode materials were adopted as the work electrode; the

counter electrode and reference electrode were Li foil. The
positive electrode was prepared by mixing above active ma-
terial, carbon black, and polyvinylidene fluoride in a weight
ratio of (80:10:10) and emulsified in N-methyl-2-pyrrolidone.
The resulting paste was spread on Al foil and dried overnight
at about 120 °C. The CR 2032 coin cell was prepared in an Ar
atmosphere inside a glove box using Li metal foil as anode
and electrolyte consisting of 1 M LiPF6, dissolved in ethylene
carbonate and diethyl carbonate (1:1 volume ratio). The work-
ing electrode and Li metal foil were separated using Cellgard
2400 membrane.

Results and discussion

XRD pattern of the as-prepared LiMn1.5Ni0.5O4 samples is
displayed in Fig. 1. The identified phase is LiMn1.5Ni0.5O4

having a cubic spinel structure and space group of Fd-3m, in
which the lithium ions occupy the tetrahedral (8a Wyckoff
position) sites, the transition metals Ni and Mn are located at
the octahedral (16d Wyckoff position) sites, and the oxygen
atoms reside in the Wyckoff position of 32e sites. It can be
found that an impurity peak at about 43.5° can be observed
from XRD pattern, being recognized as the weak impurity
phase of LixNi1−xO, which is caused by oxygen loss when the
sintering temperature was above 650 °C, accompanied with a
small amount Mn3+ generated for balance the valence [24].

Electrochemical impedance spectroscopy (EIS) are mea-
sured to get insight into the origin of the electrode kinetics of
LiMn1.5Ni0.5O4 sample. Figure 2 presents Nyquist plots of
LiMn1.5Ni0.5O4 measured at different temperatures, and the
equivalent circuit used to fit the EIS and the enlarged Nyquist
plots are shown in the inset of Fig. 2. The semicircle in the
high-frequency region is related to the resistance (Rf) of
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Fig. 1 X-ray diffraction patterns of pristine and modified LiMn1.5Ni0.5O4
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migration of Li+ ions through the surface films and film
capacitance (Cf) [31], and the straight line in the low-
frequency region is attributed to a semi-infinite Warburg dif-
fusion process in the bulk attributed to the diffusion of the
lithium ions into the bulk of the electrode material. The middle
frequency capacitive loop is caused by charge-transfer resis-
tance (Rct) and interfacial capacitance (Cdl). RS is the solution
ohmic resistance of the electrode system [32]. Moreover, the
fitted parameter values are displayed in Table 1. It can be
observed that there is no significant difference between the
parameter values in the solution ohmic resistances. It can be
found that the RS values measured at all temperatures are less
that 5 Ω, being in a negligible region of the deviation. The
difference may be due to the fitted error. It can be concluded
that the electrolyte concentration may remain invariant, and
variations in the lithium content of the electrodes do not
influence the electrolyte conductivity [33]. The charge-
transfer resistance Rct values evidently decreases with increas-
ing of the temperature.

The exchange-current density, i0, can be calculated by
means of the charge-transfer resistance [34],

i0 ¼ RT

nFRct
ð1Þ

where R is the gas constant, T the absolute temperature, n the
number of electrons transferred in the half-reaction for the
redox couple, and F is the Faraday constant. According to the
Eq. (1), the calculated results of i0 are shown in Table 1 as
function of the temperature. Obviously, the exchange current
increases with increasing of the temperature. The logarithmic
i0 is plotted against the inverse of temperature as shown in
Fig. 3, and the resultant plots follow the conventional Arrhe-
nius equation:

i0 ¼ iAexp
−Ea
RT

� �
ð2Þ

where iA is a temperature-independent coefficient. On the
basis of Eq. (2), the activation energy can be derived by the
following expressions:

Ea ¼ −1; 000Rkln10 ð3Þ

Here, k is the slope of the fitting line. The activation energy
of LiMn1.5Ni0.5O4 is calculated to be 15.94 kJ mol−1. This
value is less than that of the reported value of spinel LiMn2O4

(65 kJ mol−1) in the range −3<T<28 °C [35].
The relations between charge-transfer resistance and tem-

perature can be described by [36]

lnRct ¼ 1þ ln
R

n2F2CTA f Mþð Þ 1−xð Þ½ � 1−αð Þxα

þ ΔG−Rð Þ
R

T−1 ð4Þ

where the meanings of M+ is the concentration of lithium ion
on the surface of electrode, R is the gas constant, x is the
intercalation level, CT is the most intercalation concentration
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Fig. 2 Nyquist plots of LiMn1.5Ni0.5O4 electrodes at different tempera-
tures. Inset is the equivalent circuit used to fit the EIS and the enlarged
Nyquist plots (a) 15 °C, (b) 25 °C, (c) 35 °C, (d) 45 °C, and (e) 55 °C

Table 1 Kinetics parameters of LiMn1.5Ni0.5O4 electrodes at different
temperatures

Temperature, °C 15 25 35 45 55

Rs, Ω 3.247 5.347 3.619 4.239 3.736

Rct, Ω 658.4 589.2 478.0 431.1 327.1

i0, ×10
−5 A 3.90 4.36 5.37 5.96 7.85

DLi, ×10
−15 cm2 s−1 0.105 0.499 1.668 3.261 10.76
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Fig. 3 Plots of log(io) versus 1,000/T for the electrodes of LiMn1.5Ni0.5O4
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of lithium ions, n is the number of electrons per molecule
during oxidization, a is the symmetry factor of electrochem-
ical reaction, F is the Faraday's constant, Af is the pre-
exponential factor, andΔG is the intercalation–deintercalation
reaction active energy. The intercalation level (x) can be
regarded as a constant. Hence, it can be found that there is a
linear relationship between lnRct and 1,000/T as shown in
Fig. 4. On the basis of Eq. (4), the intercalation–deinter-
calation reaction active energy can be derived by the follow-
ing expressions:

ΔG ¼ R 1; 000k þ 1ð Þ ð5Þ

Here, k is the slope of the fitting line. The intercalation–
deintercalation reaction activation energy of LiMn1.5Ni0.5O4

is calculated to be 13.4 kJ mol−1. This value is less than that of
the reported value of spinel LiMn2O4 (53.07 kJ mol−1) in the
range −10<T<30 °C [37]. It can be concluded that
LiMn1.5Ni0.5O4 has a higher electrochemical activity than that
of pristine LiMn2O4. As we know, alien cations doping atMn-
site of LiMn2O4 is a convenient and effective way to improve
the electrochemical performance [38]. Hence, the reason of
the doping may be due to the decreased activation energy, and
then reduce the reaction energy barrier, which is the reason for
the significant improvement of conductivity of LiMxMn2-xO4

compound.
The chemical diffusion coefficient of the insertion elec-

trode materials is an important kinetic parameter to determine
lithium-ion charge/discharge rate. The Warburg impedance in
the low frequency is mainly corresponding to the diffusion of
lithium ion in the bulk of the electrode, which has been used to
determine the Li-ion diffusion coefficient in the compound.
Hence, the lithium-ion diffusion coefficient could be calculat-
ed from the low-frequency plots according to the following

equation [39]:

DLi ¼ RTð Þ2
2 An2F2CLiσ
� �2 ð6Þ

where the meanings of n is the number of electrons per
molecule during oxidization, A is the surface area of the
electrode, R is the gas constant, T is the absolute temperature,
F is the Faraday constant, C is the concentration of lithium
ion, and σ is the Warburg factor which has relationship with
Zre [40]:

Zre ¼ Rct þ Rs þ σω−1
2 ð7Þ
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Figure 5 shows the relationship between Zre and square root
of frequency (ω−1/2) in the low-frequency region. The diffu-
sion coefficient of lithium ion can be calculated based on
Eqs. (6) and (7), and the calculated result is given in Table 1.
It can be found that the lithium diffusion coefficient increases
as temperature increases. To see more clearly the temperature
effect on DLi, the logarithmic DLi was plotted against the
inverse of temperature as given in Fig. 6, and good linearity
is also observed. The resultant plots follow the conventional
Arrhenius equation [41]:

DLi ¼ DAexp −
Ea

RT

� �
ð8Þ

where DA is the pre-exponential factor (a temperature-
independent coefficient). The diffusion apparent activation
energy (EaD) can be calculated from the plot of log DLi vs
1,000/T using equation

EaD ¼ 1; 000Rkln10 ð9Þ

where k is the slope of the fitting line in Fig. 6. The diffusion
apparent activation energy can be calculated about 87.86 kJ
mol−1. This value is greater than that for the activation energy
obtained by charge transfer. This result indicates that the
influence of the temperature on the lithium diffusion process
is larger than that of the charge transfer for the lithium extrac-
tion reaction of the LiMn1.5Ni0.5O4 electrode. It can be con-
cluded that the effect of the cell temperature on the cell
capacity and the current dependence of the capacity results
mainly from the enhancement of the lithium diffusion at
elevated temperatures [42]. As we know, high rate cycling
behavior is one of the most important electrochemical char-
acteristics of lithium-ion batteries for the power storage appli-
cation. It has been reported that the diffusion overpotential is
lower than the charge-transfer overpotential at low discharge
current densities but becomes more dominant at higher current
densities, indicating that the high-rate discharge ability is
mainly controlled by the diffusion behavior rather than by
the charge-transfer reaction [43]. Hence, it can be concluded
that LiMn1.5Ni0.5O4 cell has a bad rate cycling performance at
elevated temperatures before any modification due to the high
diffusion apparent activation energy, which is consistent with
the reported experimental results [44, 45]. The relevant theo-
retical elucidations thus provide us some useful insights into
the design of novel LiMn1.5Ni0.5O4-based positive-electrode
materials.

Conclusions

LiMn1.5Ni0.5O4-positive-electrode material was successfully
synthesized by a sol–gel method. XRD patterns of LiMn1.5-
Ni0.5O4 could be assigned to a spinel structure with Fd-3m
space group. The electrolyte concentration remains invariant,
and variations in the lithium content of the electrodes do not
influence the electrolyte conductivity. LiMn1.5Ni0.5O4 has a
higher electrochemical activity than that of pristine LiMn2O4

due to the small apparent activation energy of the exchange
current and the charge transfer compared with the reported
value of spinel LiMn2O4. The high-rate discharge ability is
mainly controlled by the diffusion behavior rather than by the
charge-transfer reaction, indicating that LiMn1.5Ni0.5O4 cell
has a bad rate cycling performance at elevated temperatures
before any modification due to the high diffusion apparent
activation energy. The relevant theoretical elucidations thus
provide us some useful insights into the design of novel
LiMn1.5Ni0.5O4-based positive-electrode materials.
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